LDU decomposition of a matrix A This subroutine performs LDU decomposition of a given matrix A, where L is a lower triangular matrix, D is a diagonal matrix, and U is an upper triangular matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in), | DIMENSION(:, :) | :: | A | ||
real(kind=dp), | intent(out), | DIMENSION(SIZE(A, 1),SIZE(A, 1)) | :: | L | ||
real(kind=dp), | intent(out), | DIMENSION(SIZE(A, 1),SIZE(A, 1)) | :: | D | ||
real(kind=dp), | intent(out), | DIMENSION(SIZE(A, 1),SIZE(A, 1)) | :: | U |
SUBROUTINE LDU_decomposition(A, L, D, U) REAL(dp),DIMENSION(:, :), INTENT(IN) :: A REAL(dp),DIMENSION(SIZE(A, 1),SIZE(A, 1)), INTENT(OUT) :: L, U, D INTEGER :: i, j, k, N N = SIZE(A, 1) L = 0.d0 D = 0.d0 U = 0.d0 DO j = 1, N L(j, j) = 1.d0 U(j, j) = 1.d0 DO i = 1, j-1 U(i, j) = (A(i, j) - DOT_PRODUCT(L(i, 1:i-1), U(1:i-1, j) * [ (D(k,k), k = 1, i-1) ])) / D(i, i) END DO i = j D(j, j) = A(j, j) - DOT_PRODUCT(L(j, 1:j-1), U(1:j-1, j) * [ (D(k,k), k = 1, j-1) ]) DO i = j+1, N L(i, j) = (A(i, j) - DOT_PRODUCT(L(i, 1:j-1), U(1:j-1, j) * [ (D(k,k), k = 1, j-1) ])) / D(j, j) END DO END DO END SUBROUTINE LDU_decomposition