Alternative Cholesky decomposition of a matrix A This subroutine performs alternative Cholesky decomposition of a given symmetric positive definite matrix A, where L is a lower triangular matrix and D is a diagonal matrix.
Type | Intent | Optional | Attributes | Name | ||
---|---|---|---|---|---|---|
real(kind=dp), | intent(in), | DIMENSION(:, :) | :: | A | ||
real(kind=dp), | intent(out), | DIMENSION(SIZE(A, 1), SIZE(A, 1)) | :: | L | ||
real(kind=dp), | intent(out), | DIMENSION(SIZE(A, 1), SIZE(A, 1)) | :: | D |
SUBROUTINE LDL_Cholesky_decomposition(A, L, D) REAL(dp), DIMENSION(:, :), INTENT(IN) :: A REAL(dp), DIMENSION(SIZE(A, 1), SIZE(A, 1)), INTENT(OUT) :: L, D INTEGER :: i, j, N, k N = SIZE(A, 1) L = Identity_n(N) D = 0.d0 DO j = 1, N D(j, j) = A(j, j) - DOT_PRODUCT(L(j, 1:j-1), L(j, 1:j-1) * [ (D(k,k), k = 1, j-1) ]) DO i = j+1, N L(i, j) = (A(i, j) - DOT_PRODUCT(L(i, 1:j-1), L(j, 1:j-1) * [ (D(k,k), k = 1, j-1) ])) / D(j, j) END DO END DO END SUBROUTINE LDL_Cholesky_decomposition